Corrosion of underground pipelines and protection against it
Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные
Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов.
Коррозия металлов, т.е. их окисление – это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают.
Рис 2.1
На подземном трубопроводе за счет неоднородности металла трубы и гетерогенности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных элементов (рис.2.1 и 2.2).
Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная (питтинговая), щелевая, межкристаллитная и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов.
Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений.
Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:
- влажность грунта,
- химический состав грунта,
- кислотность грунтового электролита,
- структура грунта,
- температура транспортируемого газа.
Рис. 2.2
Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Иллюстрация возникновения блуждающих токов и влияния их на трубопровод приведена на рисунке 2.3.
Рис. 2.3 Схема возникновения блуждающих токов на железной дороге с электрической тягой на постоянном токе. 1 - тяговая подстанция, 2 - нагрузка, 3 - контактная сеть, 4 - ходовая рельсовая сеть, 5 – трубопровод Iкс - ток в контактной сети, Iрс - ток в ходовой рельсовой сети, Iн - натекающий ток на трубопровод, Iс - стекающий ток с трубопровода. |
Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:
- переходное сопротивление рельс-земля;
- продольное сопротивление ходовых рельсов;
- количество поездов на перегоне;
- расстояние между тяговыми подстанциями;
- потребление тока электропоездами;
- число и сечение отсасывающих линий;
- удельное электрическое сопротивление грунта;
- расстояние и расположение трубопровода относительно пути;
- переходное и продольное сопротивление трубопровода.
Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.
Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.
Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).
На практике не удается добиться полной оплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.
Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.
Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал.
В 1928 году Роберт Кун опытным путем установил, что величина потенциала катодной защиты стали составляет минус 0,85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен -0,55...-0,6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0,25...0,30 Вольта в отрицательную сторону.
Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного - 0,85 В. В результате этого скорость коррозии снимется до 10 мкм в год, утрачивая при этом практическое значение.
Катодную защиту трубопроводов можно осуществить двумя методами:
- применением магниевых жертвенных анодов-протекторов (гальванический метод);
- применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс - с анодным заземлением (электрический метод).
В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом (рис.2.4а).
Рис. 2. 4. Принцип катодной защиты а) с помощью гальванических жертвенных анодов, б) с помощью поляризации от источника постоянного тока. 1 - заложенный в грунт трубопровод, 2 - гальванический жертвенный анод, 3 - источник постоянного тока, 4 - малорастворимый анод. |
На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.
Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает.
Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс (рис.2.4б).
В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.
В качестве источников питания установок катодной защиты используются воздушные линии 0,4; 6; 10 кВ, а также автономные источники: дизельгенераторы, термогенераторы, газогенераторы и другие.
Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов "труба-земля", распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа). По мере удаления от этой точки разность потенциалов "труба-земля" уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Снижение разности потенциалов не обеспечивает защиту от коррозии и, в определенном диапазоне, может способствовать коррозионному растрескиванию под напряжением.
Анодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего анодного тока. Катодная защита высоколегированных сталей в сильных кислотах невозможна.
В противоположность катодной защите при анодной защите имеются только узко ограниченные области защитных потенциалов, в которых возможна защита от коррозии.